MLOps – Kernkonzepte im Überblick

Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von Machine-Learning-Modellen im Unternehmensumfeld Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen Machine-Learning-Modelle zu entwickeln ist das eine, sie im Produktivbetrieb effizient einzusetzen, eine ebenfalls nicht zu unterschätzende Herausforderung – so die Erfahrung vieler Unternehmen. Dieses Buch zeigt Ihnen, wie Sie mithilfe durchdachter MLOps-Strategien eine stabile DevOps-Umgebung für Ihre ML-Anwendungen aufbauen, Ihre Modelle kontinuierlich verbessern und langfristig warten. Das Buch erläutert MLOps-Schlüsselkonzepte, mit denen Data Scientists und Data Engineers ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen aus der gan...
MLOps – Kernkonzepte im Überblick

In Partnerschaft mit Thalia: Dein Klick führt dich direkt zur Partnerseite. Kostenlos für dich, mit einer kleinen Unterstützung für uns.