Neuartiges System zur Krankheitsvorhersage mit hybriden Deep-Learning-Techniken
Dieses Buch wurde anhand von drei verschiedenen Modellen mit einer unterschiedlichen Kombination aus Merkmalsauswahl und Deep-Learning-Techniken durchgeführt. Das erste Modell schlug die Kombination des neuen Enhanced Grey-Wolf Optimization-based Feature Selection Algorithm (EGWO-FSA) und Deep Belief Network (DBN) zur Diagnose von Herz-, Diabetes- und Krebserkrankungen vor. Das zweite Modell schlägt ein System zur Krankheitsvorhersage vor, das unter Verwendung des neuen Genetic Binary Cuckoo Optimization Algorithm (GBCOA) und des neuen Convolutional-Recurrent Neural Network (C-RNN) zur Identifizierung von Herz-, Krebs- und Diabeteserkrankungen entwickelt wurde. Die dritte Technik implementiert ein neuartiges System zur Krankheitsvorhersage, das mit dem neuen Incremental Feature Selection Algorithm (IFSA) und einem neuartigen Convolutional Neural Network with Temporal Features (T-CNN) zur Vorhersage von Herz-, Diabetes- und Krebserkrankungen entwickelt wurde. Die vorgeschlagenen Tech...